Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Aquaporins Respond to Chilling in the Phloem by Altering Protein and mRNA Expression.

Identifieur interne : 000B23 ( Main/Exploration ); précédent : 000B22; suivant : 000B24

Aquaporins Respond to Chilling in the Phloem by Altering Protein and mRNA Expression.

Auteurs : Ryan Stanfield [Canada] ; Joan Laur [Canada]

Source :

RBID : pubmed:30818743

Descripteurs français

English descriptors

Abstract

Previous experiments using heat exchangers (liquid cooled blocks) to chill a portion of plant stem have shown a transient stoppage in phloem translocation and an increase in measured phloem pressure. Although a chilled-induced stoppage of phloem transport has been known for over 100 years, the mechanism of this phenomenon is still poorly understood. Recently, work has highlighted that aquaporins occur within the plasma membrane of the sieve tubes along the entire source-to-sink pathway, and that isoforms of these water channel proteins may change dynamically. Aquaporins show regulatory roles in controlling tissue and cellular water status in response to environmental hardships. Thus, we tested if protein localization and mRNA transcript abundance changes occur in response to chilling in balsam poplar (Populus balsamifera) using immunohistochemistry and qrtPCR. The results of the immunolocalization experiments show that the labeling intensity of the sieve elements treated for only 2 min of chill time significantly increased for PIP2. After 10 min of chilling, this signal declined significantly to lower than that of the pre-chilled sieve elements. Overall, the abundance of mRNA transcript increased for the tested PIP2s following cold application. We discuss the implication that aquaporins are responsible for the alleviation of sieve tube pressure and the resumption of flow following a cold-induced blockage event.

DOI: 10.3390/cells8030202
PubMed: 30818743
PubMed Central: PMC6468725


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Aquaporins Respond to Chilling in the Phloem by Altering Protein and mRNA Expression.</title>
<author>
<name sortKey="Stanfield, Ryan" sort="Stanfield, Ryan" uniqKey="Stanfield R" first="Ryan" last="Stanfield">Ryan Stanfield</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2R3, Canada. stanfiel@ualberta.ca.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2R3</wicri:regionArea>
<wicri:noRegion>AB T6G 2R3</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Laur, Joan" sort="Laur, Joan" uniqKey="Laur J" first="Joan" last="Laur">Joan Laur</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, QC H3T 1J4, Canada. joan.laur@umontreal.ca.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, QC H3T 1J4</wicri:regionArea>
<wicri:noRegion>QC H3T 1J4</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30818743</idno>
<idno type="pmid">30818743</idno>
<idno type="doi">10.3390/cells8030202</idno>
<idno type="pmc">PMC6468725</idno>
<idno type="wicri:Area/Main/Corpus">000A08</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000A08</idno>
<idno type="wicri:Area/Main/Curation">000A08</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000A08</idno>
<idno type="wicri:Area/Main/Exploration">000A08</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Aquaporins Respond to Chilling in the Phloem by Altering Protein and mRNA Expression.</title>
<author>
<name sortKey="Stanfield, Ryan" sort="Stanfield, Ryan" uniqKey="Stanfield R" first="Ryan" last="Stanfield">Ryan Stanfield</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2R3, Canada. stanfiel@ualberta.ca.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2R3</wicri:regionArea>
<wicri:noRegion>AB T6G 2R3</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Laur, Joan" sort="Laur, Joan" uniqKey="Laur J" first="Joan" last="Laur">Joan Laur</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, QC H3T 1J4, Canada. joan.laur@umontreal.ca.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, QC H3T 1J4</wicri:regionArea>
<wicri:noRegion>QC H3T 1J4</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Cells</title>
<idno type="ISSN">2073-4409</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aquaporins (genetics)</term>
<term>Aquaporins (metabolism)</term>
<term>Cold Temperature (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Image Processing, Computer-Assisted (MeSH)</term>
<term>Phloem (genetics)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plant Stomata (physiology)</term>
<term>Populus (genetics)</term>
<term>Populus (physiology)</term>
<term>RNA, Messenger (genetics)</term>
<term>RNA, Messenger (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (génétique)</term>
<term>ARN messager (métabolisme)</term>
<term>Aquaporines (génétique)</term>
<term>Aquaporines (métabolisme)</term>
<term>Basse température (MeSH)</term>
<term>Phloème (génétique)</term>
<term>Populus (génétique)</term>
<term>Populus (physiologie)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Stomates de plante (physiologie)</term>
<term>Traitement d'image par ordinateur (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Aquaporins</term>
<term>Plant Proteins</term>
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Aquaporins</term>
<term>Plant Proteins</term>
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Phloem</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN messager</term>
<term>Aquaporines</term>
<term>Phloème</term>
<term>Populus</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN messager</term>
<term>Aquaporines</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Populus</term>
<term>Stomates de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Plant Stomata</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cold Temperature</term>
<term>Gene Expression Regulation, Plant</term>
<term>Image Processing, Computer-Assisted</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Basse température</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Traitement d'image par ordinateur</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Previous experiments using heat exchangers (liquid cooled blocks) to chill a portion of plant stem have shown a transient stoppage in phloem translocation and an increase in measured phloem pressure. Although a chilled-induced stoppage of phloem transport has been known for over 100 years, the mechanism of this phenomenon is still poorly understood. Recently, work has highlighted that aquaporins occur within the plasma membrane of the sieve tubes along the entire source-to-sink pathway, and that isoforms of these water channel proteins may change dynamically. Aquaporins show regulatory roles in controlling tissue and cellular water status in response to environmental hardships. Thus, we tested if protein localization and mRNA transcript abundance changes occur in response to chilling in balsam poplar (
<i>Populus balsamifera</i>
) using immunohistochemistry and qrtPCR. The results of the immunolocalization experiments show that the labeling intensity of the sieve elements treated for only 2 min of chill time significantly increased for PIP2. After 10 min of chilling, this signal declined significantly to lower than that of the pre-chilled sieve elements. Overall, the abundance of mRNA transcript increased for the tested PIP2s following cold application. We discuss the implication that aquaporins are responsible for the alleviation of sieve tube pressure and the resumption of flow following a cold-induced blockage event.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30818743</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>12</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Print">2073-4409</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>8</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2019</Year>
<Month>02</Month>
<Day>27</Day>
</PubDate>
</JournalIssue>
<Title>Cells</Title>
<ISOAbbreviation>Cells</ISOAbbreviation>
</Journal>
<ArticleTitle>Aquaporins Respond to Chilling in the Phloem by Altering Protein and mRNA Expression.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E202</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/cells8030202</ELocationID>
<Abstract>
<AbstractText>Previous experiments using heat exchangers (liquid cooled blocks) to chill a portion of plant stem have shown a transient stoppage in phloem translocation and an increase in measured phloem pressure. Although a chilled-induced stoppage of phloem transport has been known for over 100 years, the mechanism of this phenomenon is still poorly understood. Recently, work has highlighted that aquaporins occur within the plasma membrane of the sieve tubes along the entire source-to-sink pathway, and that isoforms of these water channel proteins may change dynamically. Aquaporins show regulatory roles in controlling tissue and cellular water status in response to environmental hardships. Thus, we tested if protein localization and mRNA transcript abundance changes occur in response to chilling in balsam poplar (
<i>Populus balsamifera</i>
) using immunohistochemistry and qrtPCR. The results of the immunolocalization experiments show that the labeling intensity of the sieve elements treated for only 2 min of chill time significantly increased for PIP2. After 10 min of chilling, this signal declined significantly to lower than that of the pre-chilled sieve elements. Overall, the abundance of mRNA transcript increased for the tested PIP2s following cold application. We discuss the implication that aquaporins are responsible for the alleviation of sieve tube pressure and the resumption of flow following a cold-induced blockage event.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Stanfield</LastName>
<ForeName>Ryan</ForeName>
<Initials>R</Initials>
<Identifier Source="ORCID">0000-0002-7507-7550</Identifier>
<AffiliationInfo>
<Affiliation>Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2R3, Canada. stanfiel@ualberta.ca.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Laur</LastName>
<ForeName>Joan</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">0000-0001-6759-6484</Identifier>
<AffiliationInfo>
<Affiliation>Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, QC H3T 1J4, Canada. joan.laur@umontreal.ca.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>02</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Cells</MedlineTA>
<NlmUniqueID>101600052</NlmUniqueID>
<ISSNLinking>2073-4409</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020346">Aquaporins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020346" MajorTopicYN="N">Aquaporins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003080" MajorTopicYN="Y">Cold Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="Y">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007091" MajorTopicYN="N">Image Processing, Computer-Assisted</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052585" MajorTopicYN="N">Phloem</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054046" MajorTopicYN="N">Plant Stomata</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">PIP1</Keyword>
<Keyword MajorTopicYN="Y">PIP2</Keyword>
<Keyword MajorTopicYN="Y">aquaporins</Keyword>
<Keyword MajorTopicYN="Y">cold-induced inhibition</Keyword>
<Keyword MajorTopicYN="Y">immunohistochemistry</Keyword>
<Keyword MajorTopicYN="Y">phloem transport</Keyword>
<Keyword MajorTopicYN="Y">qrtPCR</Keyword>
<Keyword MajorTopicYN="Y">sieve tubes</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>01</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>02</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>02</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>3</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>3</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>3</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30818743</ArticleId>
<ArticleId IdType="pii">cells8030202</ArticleId>
<ArticleId IdType="doi">10.3390/cells8030202</ArticleId>
<ArticleId IdType="pmc">PMC6468725</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 2009 Feb;149(2):981-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19091872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1962 Jul 20;137(3525):226</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13912476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1994 Aug;6(2):187-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7920711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2017 Oct;175(2):904-915</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28794259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Mar;65(5):757-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21261761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2015 Nov 30;589(23):3508-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26526614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 May;159(1):479-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22434042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;180(4):766-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18811621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Jan;16(1):215-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14671024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2017 May;104(5):719-732</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28526726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Feb;33(2):259-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19930129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2016 Oct 20;205:75-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27626884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2004 Aug 18;4:14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15317655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2014 Dec;22:101-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25299641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1997 Jan 14;1323(1):75-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9030214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):14162-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19666555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2015 May;56(5):819-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25520405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Nov 18;9(11):e111751</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25406088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2005 Oct;222(2):258-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15883833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2017 Mar 20;3:17032</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28319082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2012 Aug;53(8):1445-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22711693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Jan;137(1):341-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15591439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2006 Jan;11(1):26-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16356759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1973 Feb;51(2):372-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16658332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 1998 Aug;39(8):895-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9787465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Apr;134(4):1824-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15064368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Mar;20(3):648-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18349152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1993 Jun;12(6):2241-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8508761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1953 Aug 1;172(4370):207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13087162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2008 Nov 01;9:465</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18976492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Feb 9;439(7077):688-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16340961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Jul;31(2):189-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12121448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PeerJ. 2018 Apr 17;6:e4665</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29682428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2019 Feb;42(2):466-479</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30074610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2017 Feb 23;6:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28230527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Jan 12;7:40411</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28079178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Dec;127(4):1667-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11743111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Apr;164(4):1600-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24449709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Dec;23(12):4428-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22198148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Rev. 2015 Oct;95(4):1321-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26336033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2018 Sep 14;361(6407):1068-1069</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30213898</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<country name="Canada">
<noRegion>
<name sortKey="Stanfield, Ryan" sort="Stanfield, Ryan" uniqKey="Stanfield R" first="Ryan" last="Stanfield">Ryan Stanfield</name>
</noRegion>
<name sortKey="Laur, Joan" sort="Laur, Joan" uniqKey="Laur J" first="Joan" last="Laur">Joan Laur</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B23 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000B23 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30818743
   |texte=   Aquaporins Respond to Chilling in the Phloem by Altering Protein and mRNA Expression.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30818743" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020